

FIG. 8.6
neighborhood of $\alpha_{i}\left(t_{0}\right)$. Note that $\alpha_{i}\left[\left[t_{0}, t_{0}+\varepsilon\right]\right.$ cannot be reparametrized to be geodesic. Thus by the uniqueness feature of Theorem 1.8, the radial geodesic segment σ from $\alpha_{i}\left(t_{0}\right)$ to $\alpha_{i}\left(t_{0}+\varepsilon\right)$ is strictly shorter (Fig. 8.6). Replacing $\alpha_{i}\left[t_{0}, t_{0}+\varepsilon\right]$ by σ changes α to a strictly shorter curve from \mathbf{p} to \mathbf{q}, contradicting the assumption that α is shortest. Thus α is a possibly broken geodesic.

Now we assume that α actually has a corner, say at $\alpha_{i-1}\left(b_{i}\right)=\alpha_{i}\left(b_{i}\right)$, and again deduce a contradiction. By the remark preceding this lemma, there is an $\varepsilon>0$ such that $\alpha_{i-1}\left(b_{i}\right)$ is contained in in a normal neighborhood \mathcal{N} of $\alpha_{i-1}\left(b_{i}-\varepsilon\right)$. By continuity, some initial subsegment $\left.\alpha_{i}\right|_{\left[b_{i}, t_{1}\right]}$ of α_{i} is still in \mathcal{N}.

Thus the combined curve from $\alpha_{\mathrm{i}-1}\left(b_{i}-\varepsilon\right)$ to $\alpha_{i}\left(t_{1}\right)$ has a corner and lies in \mathscr{N}. So it is strictly longer than the radial geodesic τ of \mathscr{N} joining these points (Fig. 8.6). Then as before, replacing the combined curve by τ shortens α, giving the required contradiction.

Exercises

1. Prove:
(a) A normal ε-neighborhood of \mathbf{p} in M consists of all points \mathbf{q} in M such that $\rho(\mathbf{p}, \mathbf{q})<\varepsilon$.
(b) If $\mathbf{p} \neq \mathbf{q}$ in M, then $\rho(\mathbf{p}, \mathbf{q})>0$. (This completes the proof that intrinsic distance ρ is a metric on M; see Ex. 3 of Sec. 6.4.)
2. (Normal coordinates.) Let $\mathcal{N}=\exp _{p}(\mathscr{U})$ be a normal neighborhood of a point \mathbf{p} in M, and let $\mathbf{e}_{1}, \mathbf{e}_{2}$ be a frame at \mathbf{p}. Prove:
(a) The mapping

$$
\mathbf{n}(x, y)=\exp _{p}\left(x \mathbf{e}_{1}+y \mathbf{e}_{2}\right)
$$

is a coordinate patch on \mathscr{N}.
(b) At \mathbf{p} (but generally not elsewhere) $E=1, F=0, G=1$. Thus normal coordinates are Euclidean at p, hence at least approximately Euclidean near \mathbf{p}.
(c) Coordinate straight lines through \mathbf{p} are geodesics of M.
(d) With suitable choices, \mathbf{n} for \mathbf{R}^{2} is the identity map $\mathbf{n}(x, y)=(x, y)$. So for arbitrary M, normal coordinates generalize the natural (rectangular) coordinates of \mathbf{R}^{2}.
3. At the point $\mathbf{p}=(r, 0,0)$ of the cylinder $M: x^{2}+y^{2}=r^{2}$, let $\mathbf{e}_{1}=(0,1$, $0)$ and $\mathbf{e}_{2}=(0,0,1)$. Find an explicit formula for the normal parametrization in Exercise 2. What is the largest normal neighborhood of the point p?
4. (Continuation.) Prove:
(a) A geodesic starting at an arbitrary point $\mathbf{p}=(a, b, c)$ in the cylinder M does not minimize arc length after it passes through the antipodal line $t \rightarrow(-a,-b, t)$. (Only vertical geodesics through \mathbf{p} fail to meet this line.)
(b) If \mathbf{q} is not on the antipodal line of \mathbf{p}, there is a unique shortest geodesic from \mathbf{p} to \mathbf{q}.
(c) Derive a formula for intrinsic distance on the cylinder.
5. Let M be an augmented surface of revolution (Ex. 12 of Sec. 4.1). Prove, without computation:
(a) If M has only one intercept \mathbf{p} on the axis of revolution, then every geodesic segment γ starting at \mathbf{p} uniquely minimizes arc length.
(b) If M has a second intercept \mathbf{q}, then the conclusion in (a) holds if and only if γ does not reach \mathbf{q}.
6. In M let α be a curve segment in M from \mathbf{p} to \mathbf{q}, and β a curve segment from \mathbf{q} to \mathbf{r}. Joining α and β does not usually produce a differentiable curve from \mathbf{p} to \mathbf{r} since $\alpha+\beta$ will usually have a corner at \mathbf{q}.

In this case, prove that there is a piecewise smooth curve γ from \mathbf{p} to \mathbf{r} that is arbitrarily close to $\alpha+\beta$ but strictly shorter: $L(\gamma)<L(\alpha)+L(\beta)$. (Hint: See proof of Cor. 1.10.)

Techniques from advanced calculus show that the corner can actually be smoothed away, leaving γ differentiable throughout.
7. (Intrinsic distance is continuous.)
(a) For \mathbf{p}_{0} in M, show that the real-valued function $\mathbf{p} \rightarrow \rho\left(\mathbf{p}_{0}, \mathbf{p}\right)$ is continuous; in fact, if $\rho(\mathbf{p}, \mathbf{q})<\varepsilon$, then $\left|\rho\left(\mathbf{p}_{0}, \mathbf{p}\right)-\rho\left(\mathbf{p}_{0}, \mathbf{q}\right)\right|<\varepsilon$.
(b) State precisely and prove that the function $(\mathbf{p}, \mathbf{q}) \rightarrow \rho(\mathbf{p}, \mathbf{q})$ is continuous.
8. The radial geodesics from the point $(0,1)$ in the Poincare half-plane P are given by $(x-a)^{2}+y^{2}=a^{2}+1$ for all a (see Ex. 1 of Sec. 7.5).
(a) Show that the curves given by $x^{2}+(y-b)^{2}=b^{2}-1$ for all $b>1$ are everywhere orthogonal to these geodesics.
(b) Deduce that the curves in (a) are the polar circles about the pole $(0,1)$.
(c) (Computer graphics.) Plot a few curves from each family on the same figure.

